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Algorithms for evaluation of the crystallographic FFT for centred lattices are

presented. These algorithms can be applied to 80 space groups containing

centring operators. For 44 of them, combining these algorithms with those

described by Rowicka, Kudlicki & Otwinowski [Acta Cryst A59, 172±182] yields

the maximal symmetry reduction. For other groups, new algorithms, to be

presented in our forthcoming paper [Rowicka, Kudlicki & Otwinowski (2003),

in preparation], are needed. The requirements on the grid size and how they

interact with the choice of algorithms are also discussed in detail.

1. Introduction

This is the third in the series of articles describing our algor-

ithms for evaluation of the crystallographic fast Fourier

transform (FFT). Recently, we have presented explicit

schemes for one-step symmetry reduction for 67 space groups

in papers I and II (Rowicka et al., 2002, 2003a). As many as 80

of the remaining space groups contain centring translations.

We devote this paper to reducing symmetry induced by these

centrings. We will show how to achieve maximal symmetry

reduction for 44 groups. To this end, we will combine the

symmetry-reduction formula presented in paper II with the

here presented algorithms that take care of centring. To

achieve maximal symmetry reduction for the remaining 36

groups containing centring operators, the algorithm described

has to be combined with a new scheme dealing with data

points in special positions. Such a scheme will be presented in

paper IV (Rowicka et al., 2003b).

The article is organized as follows. In x2, we introduce

mathematical notions and notation we will use later on. In x3,

we propose algorithms for centred lattices. In x4, we offer

remarks on how different choices of algorithms restrict grid

sizes. Next, in x5, we show how to combine the symmetry-

reduction formula with the treatment of centred lattices. In x6,

requirements, limitations and future development and appli-

cation of our algorithms are discussed. In Appendices A and

B, we provide detailed description of the algorithm for speci®c

crystallographic groups.

2. Mathematical notions and notation

As in paper II, we follow the modern approach of Bricogne

(1993) and hence use a similar notation. Let Z denote the

set of all integers and Z3 denote the Cartesian product

Z� Z� Z. Matrices and vectors will be written in bold type.

The standard basis vectors of Z3 will be denoted by e1, e2 and

e3. Our goal is to compute discrete Fourier transforms of a

periodic function f de®ned on Z3. Such a function will have

the periodicity of the underlying crystal structure, described

by a 3� 3 matrix with integer entries, A. From now on, we will

require that A be invertible (that is, that its determinant is not

equal to zero: det A 6� 0). The periodicity condition reads

f �x� t� � f �x�;
where x 2 Z3 and

t 2 AZ3 � fx 2 Z3 : there exists a y 2 Z3 such that x � Ayg:
As in paper II, we will use the following equivalence relation:

yRAx, yÿ x 2 AZ3:

This means that x and y are in the relation RA if and only if

they have the same crystallographic coordinates. The equiva-

lence class of x (with respect to the relation RA) will be

�x�A � fy 2 Z3 : yÿ x 2 AZ3g:
Another useful notion is that of a quotient space (see also

Rowicka et al., 2003a; Bricogne, 1993). In this article, we deal

with the quotient space of Z3 by AZ3:

Z3=AZ3 � f�x�A : x 2 Z3g:
The notion of a quotient space allows us to describe period-

icity conditions in a very convenient way. Instead of viewing f

as a periodic function, it can be equivalently considered as

de®ned on the set of the equivalence classes, Z3=AZ3. Let us

introduce the notation

ÿ � Z3=AZ3 �1�
and

ÿ� � Z3=ATZ3;

where AT denotes the transposition of matrix A. The space ÿ�

is a space dual to ÿ. Its elements are covectors, i.e. objects dual

to vectors. Covectors will also be printed in bold type and they

will be, when there is no risk of confusion, also referred to as
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vectors. The scalar product of a covector h 2 ÿ� and a vector

x 2 ÿ, expressed in standard bases, reads

h � x � �he�1 � ke�2 � le�3� � �xe1 � ye2 � ze3� � hx� ky� lz;

where h; k; l; x; y; z 2 Z. We shall use a shorthand notation

eA�h; x� for a coef®cient (also called `twiddle factor') that will

occur frequently throughout this paper:

eA h; x� � � exp�ÿ2�ih �Aÿ1x�:
This symbol has the following properties:

eA g� h; x� � � eA g; x� �eA h; x� �
eA h; x� y� � � eA h; x� �eA h; y� �

for any g; h 2 ÿ� and x; y 2 ÿ. Let f be a complex-valued

function on ÿ, where ÿ is given by (1). The Fourier transform

of function f will be denoted by F and for any h 2 ÿ� de®ned

by

F�h� � P
x2ÿ

f �x�eA h; x� �: �2�

For simplicity, in the above formula, we have omitted the

normalization constant 1=jdet Aj.

2.1. Crystallographic group action

Let G denote the quotient (or factor) crystallographic space

group (Bricogne, 1993; Rowicka et al., 2003a). The elements of

G are the symmetry operators as listed in International Tables

for Crystallography (ITC) (Hahn, 1995). The group operation

in G is the ordinary composition of symmetry operators.

We represent the action of an element g 2 G in the real

space as follows:

Sg�x� � Rgx� tg; �3�
where x 2 ÿ. We will call Rg the rotational part of the

symmetry operator related to g. Since det Rg � �1, it follows

that Rg can be either a proper (det Rg � 1) or an improper

(det Rg � ÿ1) rotation. We will call tg a translational part

of the symmetry operator. We stress again that, since

x 2 ÿ � Z3=AZ3, the symbol x in the formula above is in fact

the equivalence class �x�A. The action (3) de®nes an action S#

on a function f on space ÿ by

�S#
g f ��x� � f �Sÿ1

g �x�� � f �Rÿ1
g �xÿ tg��:

This action S# on the functions in the real space extends to the

action S� on their Fourier transforms in the reciprocal space:

S�gF�h� � eA�h; tg�F�RT
g h�: �4�

3. Algorithms

In paper II, the symmetry-reduction formula combining the

multidimensional Cooley±Tukey factorization with crystal-

lographic symmetry was derived, and the conditions of its use

were discussed. It was shown that for some groups this formula

allows maximal symmetry reduction to be achieved in one

step.

However, after performing this symmetry reduction what

may remain in some space groups is a non-primitive transla-

tional symmetry (centring). These are the cases this article

deals with. No asymmetric unit in such cases can be described

by a decomposition matrix [such as A0 in formula (10) of

paper II], as opposed to the space groups we considered so far.

As a result, the centring operators cannot be treated by the

Cooley±Tukey type of decomposition.

Therefore, we propose a set of algorithms to treat centring-

induced symmetry. This time, we choose an asymmetric unit

that will be a contiguous set. It will be similar to FFT-asym-

metric units in the reciprocal space in paper II. One can also

associate a matrix with it, but the relationship between the

grid and its matrix will be different from that in paper II. One

can expect that the size of the asymmetric unit will be 1=jGj,
where jGj is the number of elements in the subgroup gener-

ated by the centring symmetry operators. However, as will

become clear soon, it is more convenient to choose as an

asymmetric unit only half, one-quarter or even one-ninth of

these points, but consider two, four or nine, respectively,

Figure 1
C-face centring, real space. Section at z � 0 is shown. The asymmetric
unit is coloured red. The dashed area is the domain of de®nition of
functions f1 and f2.

Figure 2
C-face centring, reciprocal space. Section at l � 0. Centres of colored
squares form the FFT-asymmetric unit, red squares symbolize F1�h0� and
blue ones F2�h0�. The Fourier transform equals zero at the centres of
white squares.



independent functions on these points. Thus the same amount

of information is encoded, but in a more convenient way. We

will use similar methods to deal with all types of centrings. We

will treat the centring-induced symmetry reduction as an

independent step. It means that, for a given crystallographic

group, we take a subgroup generated by centring operators as

our starting symmetry group. We will also introduce new

matrices A, describing conditions imposed on the computa-

tional grid solely by centring operators. The symbols AC, AA,

AF , AI and AR will denote matrices describing computational

grids for C-face centring, A-face centring, all-face centring,

body centring and rhombohedral centring, respectively:

AC �
2N 0 0

0 2M 0

0 0 Q

264
375; AA �

N 0 0

0 2M 0

0 0 2Q

264
375;

AF � AI �
2N 0 0

0 2M 0

0 0 2Q

264
375; AR �

3N 0 0

0 3M 0

0 0 3Q

264
375;

where N, M and Q are positive integers. In each of the

subsequent subsections, dealing with a speci®c centring, we

will omit indices in matrices A indicating the centring type.

Let Tx, Ty and Tz denote non-primitive translation opera-

tors

�Txf ��x� � f �x� Ne1�
�Tyf ��x� � f �x�Me2�
�Tzf ��x� � f �x�Qe3�:

Let I denote the identity operator. Then, for all centring types

except for rhombohedral centring,

T2
x � I and T2

y � I and T2
z � I:

For the rhombohedral centring,

T3
x � I and T3

y � I and T3
z � I:

3.1. C-face centred lattices

Here A � AC. This type of centring occurs whenever the

crystallographic group contains the operator x� 1
2 ; y� 1

2 ; z. In

this case, the asymmetric unit may be chosen to consist of all

grid points that have coordinates in the following range:

x � 0; . . . ;N ÿ 1, y � 0; . . . ; 2M ÿ 1 and z � 0; . . . ;Qÿ 1.

The asymmetric unit described above is presented in Fig. 1.

To have a more concise notation for this kind of subset, let

us introduce matrices

~A0 �
2 0 0

0 2 0

0 0 1

24 35; ~A1 �
N 0 0

0 M 0

0 0 Q

24 35;
such that

A � ~A1
~A0:

Let ~ÿ0 be

~ÿ0 � Z3= ~A1Z
3:
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Figure 3
All-face centring, real space. The set ~ÿ0, the domain of de®nition of
functions f1 and f2 is coloured red. Its volume is one-eighth of the unit
cell, it corresponds to half of the asymmetric unit.

Figure 5
FFT-asymmetric unit in the reciprocal space for body centring. The
Fourier transform equals zero in different places depending on the parity
of coordinate l. F1�h0� is denoted red, F2�h0� is denoted blue, F3�h0� is
denoted green and F4�h0� is denoted yellow.

Figure 4
FFT-asymmetric unit in the reciprocal space for all-face centring. The
Fourier transform behaves differently in planes with l even (left panel)
and l odd (right panel). The Fourier transform equals zero in the centres
of blank squares. Centres of the coloured squares form the FFT-
asymmetric unit in the reciprocal space. Red denotes F1�h0� and blue
denotes F2�h0�.
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The tilde above the matrix symbol ÿ0 indicates that ÿ0 from

paper II is not the same as ~ÿ0 here, and that the above rela-

tionship between ~A1 and ~ÿ0 is different from that between A1

and ÿ0 described in paper II.

Let us compute the Fourier transform

F�h� � P
x2ÿ

f �x�eA�h; x� � P
x2 ~ÿ0

ff �x�eA�h; x�

� �TxTyf ��x�eA�h; �x� Ne1 �Me2��
� �Tyf ��x�eA�h; �x�Me2�� � �Txf ��x�eA�h; �x� Ne1��g:

Note that

eA�h; �x�Me2�� � exp�ÿk�i�eA�h; x�
eA�h; �x� Ne1 �Me2�� � exp�ÿ�h� k��i�eA�h; x�

eA�h; �x� Ne1�� � exp�ÿh�i�eA�h; x�:
Moreover, by symmetry,

f �x� � �TxTyf ��x�:
Thus,

F�h� � P
x2 ~ÿ0

f1� exp�ÿ�i�h� k��geA�h; x�f �x�

� P
x2 ~ÿ0

exp�ÿ�ik�f1� exp�ÿ�i�h� k��geA�h; x��Tyf ��x�:

�5�
Analogously as in paper II, one can uniquely decompose h as

h � ~A0h0 � h1; �6�
where h0 2 Z3= ~A1Z

3 and h1 2 Z3= ~A0Z
3 � f0; e�1; e�2; e�1 � e�2g.

Hence, taking into account the formula (5), we obtain

F� ~A0h0 � e�1� � 0 and F� ~A0h0 � e�2� � 0:

For x 2 ~ÿ0, let us de®ne

f1�x� � 2�ff �x� � �Tyf ��x�g� � 2�fI� Tygf ��x�
f2�x� � 2eA��e�1 � e�2�; x�ff �x� ÿ �Tyf ��x�g
� 2eA��e�1 � e�2�; x��fIÿ Tygf ��x�:

With this notation,

F� ~A0h0� �
P

x2 ~ÿ0

f1�x�eA� ~A0h0; x� � F1�h0�

F� ~A0h0 � e�1 � e�2� �
P

x2 ~ÿ0

f2�x�eA� ~A0h0; x� � F2�h0�:

This means that, in order to evaluate the Fourier transform of

f on the computational grid de®ned by ÿ, it is enough to

compute Fourier transforms F1 and F2 of functions f1 and f2 on

the computational grid de®ned by ~ÿ0. The size of this grid is

one-quarter of that of the original grid. The FFT-asymmetric

unit in the reciprocal space (see paper II for de®nition) is

shown in Fig. 2.

This algorithm is denoted by CCent. in Appendix A.

3.2. A-face centred lattices

In this subsection, A � AA. Now the symmetry operator is

x; y� 1
2 ; z� 1

2, so the entire reasoning remains the same as in

the previous case, we only substitute z coordinates for x

coordinates. In particular, the functions f1 and f2 are given by

f1�x� � 2�fI� Tzgf ��x�
f2�x� � 2eA��e�2 � e�3�; x��fIÿ Tzgf ��x�:

This algorithm is denoted by ACent. in Appendix A.

3.3. All-face centred lattices

Here A � AF. Such a centring occurs whenever the

symmetry operators x; y� 1
2 ; z� 1

2 (inducing C-face centring)

and x� 1
2 ; y� 1

2 ; z (inducing A-face centring) appear toge-

ther. In this case, we choose ~A0 � 2I3, where I3 denotes

the 3� 3 identity matrix. Then, ~A1 � A ~Aÿ1
0 . As usual,

~ÿ0 � Z3= ~A1Z3 (Fig. 3).

Let us denote

f1�x� � 4�fI� Tzgf ��x�
f2�x� � 4eA�e�1; x��fIÿ Tzgf ��x�:

These functions are de®ned on ~ÿ0, which is depicted in Fig. 3.

Then, for h0 2 Z3= ~A1Z3, we have

F� ~A0h0� � F1�h0�
F� ~A0h0 � e�1 � e�2 � e�3� � F2�h0�:

This provides a recipe for the Fourier transform in points of

the reciprocal space whose coordinates are either all even or

all odd. It can be shown that the Fourier transform equals zero

in all other points of the FFT unit cell, namely

F� ~A0h0 � e�1� � 0

F� ~A0h0 � e�2� � 0

F� ~A0h0 � e�3� � 0

F� ~A0h0 � e�1 � e�2� � 0

F� ~A0h0 � e�1 � e�3� � 0

F� ~A0h0 � e�2 � e�3� � 0:

The FFT-asymmetric unit in the reciprocal space is shown in

Fig. 4. This algorithm is denoted by FCent. in Appendix A.

3.4. Body-centred lattices

Here, A � AI . This centring is related to the operator

x� 1
2 ; y� 1

2 ; z� 1
2. In this case, we also choose ~A0 � 2I3. As

usual, ~A1 � AAÿ1
0 . Let us de®ne the following functions:

f1�x� � 2�fI� Txf � Ty � Tzgf ��x�
f2�x� � 2eA��e�1 � e�2�; x��fIÿ Tx ÿ Ty � Tzgf ��x�
f3�x� � 2eA��e�1 � e�3�; x��fIÿ Tx � Ty ÿ Tzgf ��x�
f4�x� � 2eA��e�2 � e�3�; x��fI� Tx ÿ Ty ÿ Tzgf ��x�:

Then, for h0 2 Z3= ~A1Z
3, the Fourier transform F is expressed

in terms of the Fourier transforms of functions f1, f2, f3 and f4

as follows:



F� ~A0h0� � F1�h0�
F� ~A0h0 � e�1 � e�2� � F2�h0�
F� ~A0h0 � e�1 � e�3� � F3�h0�
F� ~A0h0 � e�2 � e�3� � F4�h0�:

Moreover, it can be shown that the Fourier transform equals 0

in all other points of the FFT unit cell. The FFT-asymmetric

unit in the reciprocal space is shown in Fig. 5. This algorithm is

denoted by ICent. in Appendix A.

3.5. Rhombohedral centring

This centring is induced by symmetry operators:

x� 2
3 ; y� 1

3 ; z� 1
3 and x� 1

3 ; y� 2
3 ; z� 2

3 (obverse setting). In

such a case,

A �
3N 0 0

0 3M 0

0 0 3Q

24 35;
where N, M and Q are positive integers. We choose ~A0 to be

3I3. In solving this case, we follow the same simple rules as in

the previously discussed centrings. The resulting formulae

look much more complicated, although the underlying logic is

the same. Note that, unlike before, in this subsection Tz

denotes a translation along the z axis by 1
3 of the unit-cell size

and T2
z by 2

3. The same holds for Ty and T2
y . Let us de®ne

~f1�x� � f �x� � Tzf �x� � T2
z f �x�

~f2�x� � f �x� � exp�2�i=3�Tzf �x� � exp�4�i=3�T2
z f �x�

~f3�x� � f �x� � exp�4�i=3�Tzf �x� � exp�2�i=3�T2
z f �x�:

Now, the functions f1; . . . ; f9, whose Fourier transforms

F1; . . . ;F9 have to be computed, are given by

f1�x� � �fI� Ty � T2
y g~f1��x�

f2�x� � 3eA��e�2 � 2e�3�; x��fI� exp�4�i=3�Ty

� exp�2�i=3�T2
y g~f2��x�

f3�x� � 3eA��2e�2 � e�3�; x��fI� exp�2�i=3�Ty

� exp�4�i=3�T2
y g~f3��x�

f4�x� � 3eA��e�1 � e�3�; x��fI� Ty � T2
y g~f3��x�

f5�x� � 3eA��e�1 � e�2�; x��fI� exp�4�i=3�Ty

� exp�2�i=3�T2
y g~f1��x�

f6�x� � 3eA��e�1 � 2e�2 � 2e�3�; x��fI� exp�2�i=3�Ty

� exp�4�i=3�T2
y g~f2��x�

f7�x� � 3eA��2e�1 � 2e�3�; x��fI� Ty � T2
y g~f2��x�

f8�x� � 3eA��2e�1 � e�2 � e�3�; x��fI� exp�4�i=3�Ty

� exp�2�i=3�T2
y g~f3��x�

f9�x� � 3eA��2e�1 � 2e�2�; x��fI� exp�2�i=3�Ty

� exp�4�i=3�T2
y g~f1��x�:

Then,

F� ~A0h0� � F1�h0�
F� ~A0h0 � e�2 � 2e�3� � F2�h0�
F� ~A0h0 � 2e�2 � e�3� � F3�h0�

F� ~A0h0 � e�1 � e�3� � F4�h0�
F� ~A0h0 � e�1 � e�2� � F5�h0�

F� ~A0h0 � e�1 � 2e�2 � 2e�3� � F6�h0�
F� ~A0h0 � 2e�1 � 2e�3� � F7�h0�

F� ~A0h0 � 2e�1 � e�2 � e�3� � F8�h0�
F� ~A0h0 � 2e�1 � 2e�2� � F9�h0�:

Moreover, it can be shown that the Fourier transform equals 0

in all the other points of the FFT unit cell, that is in points

�h; k; l� such that 2h� k� l is not divisible by 3.

4. Combining centring with decimation: example of C2
group

As we have stated in x3, the crystallographic groups we deal

with in this paper have a subgroup whose symmetry can be

maximally reduced by using the formalism described in paper

II. Let us denote this subgroup by GNT and a subgroup

generated by the non-primitive translation operators by GCL.

Then, since GCL is a normal subgroup of G, one can consider a

quotient group G=GCL. This quotient group coincides with

GNT. By de®nition, it will not contain any purely translational

symmetry operators. Consequently, one can apply to it the

approach developed in xx3 and 4 of paper II. Let us explain

this procedure by the example of the C2 space group. The

symmetry operators for this group (in the crystallographic

coordinates) are

e : x; y; z

� : ÿ x; y;ÿz

� : x� 1
2 ; y� 1

2 ; z

�� : ÿ x� 1
2 ; y� 1

2 ;ÿz:

The fourth operator is denoted by ��, because it is a compo-

sition of the second and the third ones. Then,

G � fe; �; �; ��g:
The subgroup generated by translations, GCL, is given by

GCL � fe; �g:
Therefore,

GNT � G=GCL � fe; �g:
Let us deal ®rst with the symmetry induced by G=GCL, and

only then with the C-face centring (that is GCL). This proce-

dure is depicted in Appendix A by

Here, the matrix A and the vector b de®ne the change from

crystallographic to the grid coordinates. Let xc and x denote
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Name Vector ÿb Matrix A Algorithm

C2 �0; 0; 1
2� 2jx; 2jy; 2jz 2z CCent.
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the coordinates of the same point in the crystallographic and

grid coordinate systems, respectively. The transformation from

the crystallographic to the grid coordinates is then given by

x � Axc � b: �7�
The matrix A here is the same matrix that described the grid ÿ
[see equation (1)]. The vector b corresponds to the shift of the

origin of the coordinate system.

The expression 2jx; 2jy; 2jz in the third column means that

the number of points along x, y and z axes should be even.

Consequently,

A �
2N 0 0

0 2M 0

0 0 2Q

24 35 and b � ÿ
0

0
1
2

24 35;
where N, M and Q are positive integers.

The relationship between the symmetry operator �Rc
g; tc

g� in

the crystallographic coordinate system and in the grid coor-

dinate system �Rg; tg� is the following:

Rg � Rc
g and tg � �Iÿ Rc

g�b�Atc
g:

Hence, in our case,

R� �
ÿ1 0 0

0 1 0

0 0 ÿ1

24 35; t� �
0

0

ÿ1

24 35:
Moreover, 2z in the column Algorithm means that A0 is given

by

A0 �
1 0 0

0 1 0

0 0 2

24 35:
As a result,

A1 �
2N 0 0

0 2M 0

0 0 Q

24 35:
Let us decompose h according to the formula

h � h1 �A1h0;

where

h0 2 Z3=A1Z3 �
0

0

0

24 3524 35; 0

0

1

24 3524 358<:
9=;

and

h1 2 Z3=A0Z
3

� f0; . . . ; 2N ÿ 1g � f0; . . . ; 2M ÿ 1g � f0; . . . ;Qÿ 1g:
Let us de®ne Y as in paper II:

Y�h1� �
P

x2A0Z3=A1Z3

f �x�eA�h1; x�:

Then, from the symmetry-reduction formula of paper II

[formula (15)], it follows that

F�h1� � Y�h1� � eA�h1;ÿe3�Y�RT
�h1�

F�h1 �A1e�3� � Y�h1� ÿ eA�h1;ÿe3�Y�RT
�h1�:

�8�

Now we can proceed to the second part: reducing transla-

tional symmetry. In our example, this means reducing the

C-face centring, as described in x3.1. This procedure could be

described in our table as:

Notice that now the matrix A1 from the previous stage plays

the role of matrix A for the present stage. To avoid confusion,

we will denote this matrix by ACL:

ACL �
2N 0 0

0 2M 0

0 0 Q

24 35:
Additionally, as explained in x3.1:

~A0 �
2 0 0

0 2 0

0 0 1

24 35; ~A1 �
N 0 0

0 M 0

0 0 Q

24 35:
Note that ACL � ~A0

~A1 (while A � A0
~A0

~A1). Let ~h :� h1.

Now, using these new matrices, we can decompose ~h according

to formula (6). Now x3.1 yields that

Y� ~A0
~h0 � e�1� � 0 and Y� ~A0

~h0 � e�2� � 0;

where ~h0 2 Z3= ~A1Z
3. It follows that the only points at which Y

does not equal 0 are ~A0
~h0 and ~A0

~h0 � e�1 � e�2 and

Y� ~A0
~h0� � F1� ~h0�

Y� ~A0
~h0 � e�1 � e�2� � F2� ~h0�;

�9�

where F1 and F2 are Fourier transforms of functions:

f1�x� � 2ff �x� � �Tyf ��x�g
f2�x� � 2eA��e�1 � e�2�; x�ff �x� ÿ �Tyf ��x�g;

respectively. The asymmetric unit for the C2 group for this

decomposition is depicted in Fig. 6. After substituting (8) into

(9) and taking into account that RT
� commutes with A0 and

�AT
0 �ÿ1A � ~A0

~A1, we obtain the ®nal formulae:

Figure 6
The 2z CCent. decomposition for the C2 group. The asymmetric unit is
the area coloured orange or blue; the domain of de®nition of functions f1

and f2 is blue.

Name Vector ÿb Matrix A Algorithm

C2 �0; 0; 0� 2jx; 2jy CCent.



F� ~A0
~h0� � F1� ~h0� � eACL

� ~h0; e3�F1�RT
�

~h0�
F� ~A0

~h0 �A1e�3� � F1� ~h0� ÿ eACL
� ~h0; e3�F1�RT

�
~h0�

F� ~A0
~h0 � e�1 � e�2� � F2� ~h0� � eACL

� ~h0; e3�F2�RT
�

~h0�
F� ~A0

~h0 � e�1 � e�2 �A1e�3� � F2� ~h0� ÿ eACL
� ~h0; e3�F2�RT

�
~h0�:

The formulae above, expressed in the coordinates h; k; l, read

F�2h; 2k; l� � F1�h; k; l� � exp�ÿ2�l=Q�
� F1�N ÿ h; k;Qÿ l�

F�2h; 2k; l �Q� � F1�h; k; l� ÿ exp�ÿ2�l=Q�
� F1�N ÿ h; k;Qÿ l�

F�2h� 1; 2k� 1; l� � F2�h; k; l� � exp�ÿ2�l=Q�
� F2�N ÿ h; k;Qÿ l�

F�2h� 1; 2k� 1; l �Q� � F2�h; k; l� ÿ exp�ÿ2�l=Q�
� F2�N ÿ h; k;Qÿ l�;

where h � 0; 1; . . . ;N ÿ 1 and k � 0; 1; . . . ;M ÿ 1 and

l � 0; 1; . . . ;Qÿ 1. The Fourier transform F equals zero at all

other points of ÿ�, that is in points whose sum of h and k

coordinates is odd.

5. Remarks on grid-size requirements

The residual translational symmetry left after the decom-

position described in xx3 and 4 of paper II depends not only on

the space group but also on the prime-factor decomposition of

the number of grid points along x, y and z axes. A good

example here is the plane group cm.

Let us switch to the grid coordinate system, described by

A � 2N 0

0 2M

� �
and b � ÿ

1
2

0

� �
;

where N and M are positive integers.

The matrix describing our subgrid decomposition in this

case reads

A0 � 2 0

0 2

� �
:

Let � denote the re¯ection with respect to the y axis and let �
denote centring and let e denote the identity element of the

symmetry group. Then, in the grid coordinate system, these

symmetry operators are given by

R� �
ÿ1 0

0 1

� �
and t� �

ÿ1

0

� �
R� �

1 0

0 1

� �
and t� �

N

M

� �
R�� �

ÿ1 0

0 1

� �
and t�� �

N ÿ 1

M

� �
:

Observe that

te � 0

0

� �
2 0

0

� �� �
A0

; t� � ÿ1

0

� �
2 1

0

� �� �
A0

:

However, it depends on the parity of N and M to which

equivalence classes t� and t�� belong. If N and M are both

even, then

t� � N

M

� �
2 0

0

� �� �
A0

; t�� � N ÿ 1

M

� �
2 1

0

� �� �
A0

:

If N is odd and M is even, then

t� � N

M

� �
2 1

0

� �� �
A0

; t�� � N ÿ 1

M

� �
2 0

0

� �� �
A0

:

If N is even and M is odd, then

t� � N

M

� �
2 0

1

� �� �
A0

; t�� � N ÿ 1

M

� �
2 1

1

� �� �
A0

:

If N and M are both odd, then

t� � N

M

� �
2 1

1

� �� �
A0

; t�� � N ÿ 1

M

� �
2 0

1

� �� �
A0

:

The next step depends on the parity of M. Let us ®rst consider

the case of M odd. Then Assumption 2 in x3 of paper II is

ful®lled, that is the translational part of every symmetry

operator belongs to a different equivalence class. This way,

through the decomposition depicted in Fig. 7(a), a full

reduction of symmetry is achieved.

Let us switch to the case of even M. To incorporate this

condition into the matrix A, we will write

A � 2N 0

0 4M

� �
;

where N and M are positive numbers. Observe that if we

choose
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Figure 7
Subgrid decompositions for the cm plane group for different grid sizes.
(a) The number of grid points along the x axis is divisible by 4, along y not
divisible by 4, but still even. The non-primitive translation vector
connects points in different subgrids. (b) The numbers of points along x
and y axes are both divisible by 4. The centring vector in this case
connects points from the same subgrid.
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A0 � 1 0

0 2

� �
and A1 � 2N 0

0 2M

� �
;

then

te � 0

0

� �
; t� � ÿ1

0

� �
; t� � N

2M

� �
; t�� � N ÿ 1

2M

� �
and, since all second coordinates of these vectors are even,

te; t�; t�; t�� 2 0

0

� �� �
A0

:

This implies that no symmetry reduction is possible in this

case. Therefore, we should choose another A0, for example

A0 � 2 0

0 1

� �
:

Suppose that N is odd. Then,

te; t�� 2 0

0

� �� �
A0

; t�; t� 2 1

0

� �� �
A0

:

After this decomposition, the residual symmetry will be given

by the symmetry operator ÿx� 1
2 ; y� 1

2.

Now suppose that N is even. It follows that

te; t� 2 0

0

� �� �
A0

; t�; t�� 2 1

0

� �� �
A0

:

That is, we decompose the computational grid as shown in Fig.

7(b). Then there is a residual translational symmetry in every

subgrid, the translation vector also depicted in this ®gure. One

has to deal with translational symmetry, after reducing the

non-translational symmetry ®rst. This is done exactly as in the

C-face centring (x3.1).

6. Discussion

There are different possible methods of dealing with centrings.

One solution is to transform the coordinate system in such a

way that the resulting lattice is primitive. Another is to use the

multiplexing technique (Ten Eyck, 1973; Bricogne, 1993). The

approach presented here is a different one. It is consistent with

our philosophy of evaluating the crystallographic FFT, which

is based on using a multidimensional Cooley±Tukey type

of decomposition for symmetry reduction. The difference

between our algorithms for treating centrings and other types

of symmetry is that here the symmetry-speci®c step in the

decomposition corresponds to Cooley±Tukey decomposition

in the reciprocal space, as opposed to the real space in all other

cases. The suitability of multidimensional Cooley±Tukey

decomposition to treatment of centred lattices has also been

suggested by Bricogne (1993).

We have shown how to reduce symmetry due to centring

operators in crystallographic FFT calculations. We have also

discussed how the presented algorithm can be combined with

schemes dealing with other symmetry operators. The example

of the cm group, discussed in the previous section, not only

shows how the residual translational symmetry is affected by

choosing grid size. It also shows that in order to cover all

possible cases it would be necessary to list several combina-

tions of algorithms (depending on grid size) for every space

group. To avoid this, we decided to list in Appendix A only one

case, the one that is most important in practice. It is the case in

which N, M and Q can be divisible by arbitrarily high powers

of 2. Therefore, sometimes, the full symmetry reduction can

be achieved with assumptions weaker than those listed in

Appendix A. However, for convenience sake, we prefer to

impose the conditions from Appendix A and as a result to

have only one1 possible algorithm for each space group. This is

very convenient, since it substantially simpli®es the imple-

mentation of the crystallographic FFT. We emphasize that the

conditions in question do not restrict the use of our algorithms

in practice. To take full advantage of FFT (crystallographic or

not), one always chooses their grid sizes to have as many small

prime factors as possible, thus the requirement of the number

of points in the asymmetric unit divisible by 4, 6, 8 or 16 is

usually satis®ed in the ®rst place anyway.

In Appendix B, we list the conditions under which

symmetry reduction can be achieved in one step, without

special procedures for reducing translational symmetry.

Unfortunately, these conditions are such that these algorithms

are of little practical value.

APPENDIX A
Tables of algorithms

The tables below describe the set-up. Each row starts with the

ITC number and name of the group (alternative descriptions

of the same group are marked by alt). Following is the number

of symmetry operators, denoted by jGj, it is approximately

equal to the speedup achieved by using our algorithms. Then

we list the vectors ÿb and the matrix A that de®ne the grid

coordinate system by (7). For example, the symbols

2jx; 2jy; 4jz given as a description of matrix A should be

understood as follows:

A �
2N 0 0

0 2M 0

0 0 4Q

24 35;
where N, M and Q are positive integers. There are various

origins of requirements imposed on the entries of matrix A.

First, if our algorithm is to take every second point along the x,

y and z axes, we ®rst want to make sure that the number of

points along these axes is even. In the case of the groups

mentioned above, this requirement would lead to condition

2jx; 2jy; 2jz. One of the reasons that we have additional

conditions is that we want the computational grid to be

invariant under the action of symmetry operators. We also

want to have only one algorithm for every space group, so

sometimes we imposed stricter than necessary (but not too

strict for crystallographic applications) divisibility conditions

to avoid considering several possibilities. This issue was

1 Alternative algorithms, allowing for data points in special positions, can be
constructed, too. They will be presented in paper IV.



discussed in x6. We emphasize that the restrictions on the size

of the asymmetric unit we impose are far from signi®cant.

Often, we require simply that the asymmetric unit consists of

an integer number of points. The strictest condition on the

asymmetric unit in this paper is

This condition is still not restrictive. The Fddd group

consists of 32 symmetry operators, so all we require is that the

number of points in the asymmetric unit is divisible by 16 (this

is partly due to the presence of the ÿx� 1
4 ;ÿy� 1

4 ;ÿz� 1
4

operator in this crystallographic group). The last column of

Table 1 contains a symbol of the algorithm used.

Symbol explanation: 2x: regular subgrid consisting of every

second point along the x axis. 2x2y: regular subgrid consisting

Acta Cryst. (2003). A59, 183±192 Maøgorzata Rowicka et al. � Crystallographic FFT. III 191

research papers

Name jGj Matrix A Algorithm

Fddd 32 8jx; 8jy; 8jz 2x2y2z FCent.

Table 1
Algorithms for symmetry reduction for practical grid sizes; columns 1 and
2: crystallographic group number and symbol; column 3: number of
elements; column 4: origin shift; column 5: minimal divisibility conditions
for unit-cell sides; column 6: algorithm types for reducing non-
translational and translational symmetry (see paper II and x3 above,
respectively).

ITC No. Name jGj Vector ÿb Matrix A Algorithm

4 alt I21² 4 �12 ; 0; 0� 4jx; 2jy; 2jz 2x ICent.
5 C121 4 �0; 0; 1

2� 2jx; 2jy; 2jz 2z CCent.
5 alt C21³ 4 �0; 0; 1

2� 2jx; 2jy; 2jz 2z CCent.
5 alt A2§ 4 �12 ; 0; 0� 2jx; 2jy; 2jz 2x ACent.
8 C1m1 4 �0; 1

2 ; 0� 2jx; 4jy 2y CCent.
9 C1c1 4 �0; 1

2 ; 0� 2jx; 4jy; 2jz 2y CCent.
12 C12=m1 8 �0; 1

2 ;
1
2� 2jx; 4jy; 2jz 2y2z CCent.

15 C12=c1 8 �12 ; 1
2 ; 0� 4jx; 4jy; 2jz 2x2y CCent.

20 C2221 8 �12 ; 1
2 ; 0� 4jx; 4jy; 2jz 2x2y CCent.

21 C222 8 �0; 1
2 ;

1
2� 2jx; 4jy; 2jz 2y2z CCent.

22 F222 16 �12 ; 1
2 ; 0� 4jx; 4jy; 2jz 2x2y FCent.

23 I222 8 �12 ; 1
2 ; 0� 4jx; 4jy; 2jz 2x2y ICent.

24 I212121 8 �12 ; 1
2 ; 0� 4jx; 4jy; 2jz 2x2y ICent.

35 Cmm2 8 �12 ; 1
2 ; 0� 4jx; 4jy 2x2y CCent.

36 Cmc21 8 �12 ; 1
2 ; 0� 4jx; 4jy; 2jz 2x2y CCent.

37 Ccc2 8 �12 ; 1
2 ; 0� 4jx; 4jy; 2jz 2x2y CCent.

38 Amm2 8 �12 ; 1
2 ; 0� 2jx; 4jy; 2jz 2x2y ACent.

39 Abm2 8 �12 ; 1
2 ; 0� 2jx; 4jy; 2jz 2x2y ACent.

40 Ama2 8 �12 ; 1
2 ; 0� 4jx; 4jy; 2jz 2x2y ACent.

41 Aba2 8 �12 ; 1
2 ; 0� 4jx; 4jy; 2jz 2x2y ACent.

42 Fmm2 16 �12 ; 1
2 ; 0� 4jx; 4jy; 2jz 2x2y FCent.

43 Fdd2 16 �12 ; 1
2 ; 0� 8jx; 8jy; 4jz 2x2y FCent.

44 Imm2 8 �12 ; 1
2 ; 0� 4jx; 4jy; 2jz 2x2y ICent.

45 Iba2 8 �12 ; 1
2 ; 0� 4jx; 4jy; 2jz 2x2y ICent.

46 Ima2 8 �12 ; 1
2 ; 0� 4jx; 4jy; 2jz 2x2y ICent.

63 Cmcm 16 �12 ; 1
2 ;

1
2� 4jx; 4jy; 4jz 2x2y2z CCent.

64 Cmca 16 �12 ; 1
2 ;

1
2� 4jx; 4jy; 4jz 2x2y2z CCent.

65 Cmmm 16 �12 ; 1
2 ;

1
2� 4jx; 4jy; 2jz 2x2y2z CCent.

66 Cccm 16 �12 ; 1
2 ;

1
2� 4jx; 4jy; 2jz 2x2y2z CCent.

67 Cmma 16 �12 ; 1
2 ;

1
2� 4jx; 4jy; 2jz 2x2y2z CCent.

68 Ccca 16 �12 ; 1
2 ;

1
2� 4jx; 4jy; 4jz 2x2y2z CCent.

69 Fmmm 32 �12 ; 1
2 ;

1
2� 4jx; 4jy; 4jz 2x2y2z FCent.

70 Fddd 32 �12 ; 1
2 ;

1
2� 8jx; 8jy; 8jz 2x2y2z FCent.

71 Immm 16 �12 ; 1
2 ;

1
2� 4jx; 4jy; 4jz 2x2y2z ICent.

72 Ibam 16 �12 ; 1
2 ;

1
2� 4jx; 4jy; 4jz 2x2y2z ICent.

73 Ibca 16 �12 ; 1
2 ;

1
2� 4jx; 4jy; 4jz 2x2y2z ICent.

74 Imma 16 �12 ; 1
2 ;

1
2� 4jx; 4jy; 4jz 2x2y2z ICent.

79 I4 8 �12 ; 1
2 ; 0� 4jx; 4jy; 2jz 2x2y ICent.

80 I41 8 �12 ; 1
2 ;

1
2� 4jx; 4jy; 4jz 2x2y ICent.

82 I �4 8 �12 ; 1
2 ; 0� 4jx; 4jy; 2jz 2x2y ICent.

87 I4=m 16 �12 ; 1
2 ;

1
2� 4jx; 4jy; 4jz 2x2y2z ICent.

88 I41=a 16 �12 ; 1
2 ;

1
2� 4jx; 4jy; 8jz 2x2y2z ICent.

97 I422 16 �12 ; 1
2 ;

1
2� 4jx; 4jy; 4jz 2x2y2z ICent.

98 I4122 16 �12 ; 1
2 ;

1
2� 4jx; 4jy; 4jz 2x2y2z ICent.

119 I �4m2 16 �12 ; 1
2 ;

1
2� 4jx; 4jy; 4jz 2x2y2z ICent.

120 I �4c2 16 �12 ; 1
2 ;

1
2� 4jx; 4jy; 4jz 2x2y2z ICent.

146 R3 9 �23 ; 1
3 ; 0� 3jx; 3jy; 3jz 3(x+y) RCent.

² I21 is the group de®ned by symmetry operators x; y; z; ÿx; y� 1=2;ÿz;
x� 1=2; y� 1=2; z� 1=2; ÿx� 1=2; y; 1=2ÿ z. ³ C21 is the group de®ned by
symmetry operators x; y; z; ÿx; y� 1=2;ÿz; x� 1=2; y� 1=2; z; 1=2ÿ x; y;ÿz. § A2
is the group de®ned by symmetry operators x; y; z; ÿx; y� 1=2;ÿz; x; y� 1=2; z� 1=2;
ÿx; y; 1=2ÿ z.

Table 2
Algorithms for symmetry reduction for non-practical grid sizes; columns
1 and 2: crystallographic group number and symbol; column 3: origin
shift; columns 4 and 5: divisibility conditions for unit-cell sides; column 6:
algorithm type (see paper II).

ITC No. Name Vector ÿb Matrix A Conditions Algorithm

4 alt I21² �12 ; 0; 1
2� 4jx; 2jy; 2jz Q odd 2x2z

5 C121 �12 ; 0; 1
2� 2jx, 2jy; 2jz N odd 2x2z

5 alt C21³ �12 ; 0; 1
2� 2jx; 2jy; 2jz N odd 2x2z

5 alt A2§ �12 ; 0; 1
2� 2jx; 2jy; 2jz Q odd 2x2z

8 C1m1 �0; 1
2 ; 0� 2jx; 2jy N odd 2x2y

9 C1c1 �0; 1
2 ; 0� 2jx; 2jy; 2jz N odd 2x2y

12 C12=m1 �12 ; 1
2 ;

1
2� 2jx, 2jy, 2jz N odd 2x2y2z

15 C12=c1 �12 ; 1
2 ;

1
2� 4jx; 2jy; 2jz M odd, Q odd 2x2y2z

20 C2221 �12 ; 1
2 ;

1
2� 4jx, 2jy, 2jz M odd 2x2y2z

21 C222 �12 ; 1
2 ;

1
2� 4jx, 2jy; 2jz M odd 2x2y2z

22 F222 �12 ; 1
2 ;

1
2� 4jx, 4jy, 2jz N odd, M odd 4x4y

23 I222 �12 ; 1
2 ;

1
2� 4jx, 4jy, 2jz Q odd 2x2y2z

24 I212121 �12 ; 1
2 ;

1
2� 2jx, 2jy, 2jz N odd or M odd

or Q odd
2x2y2z

35 Cmm2 �12 ; 1
2 ; 0� 4jx, 2jy N odd 4x2y

36 Cmc21 �12 ; 1
2 ;

1
2� 2jx, 2jy, 2jz M odd, Q odd 2x2y2z

37 Ccc2 �12 ; 1
2 ; 0� 4jx, 2jy, 2jz N odd 4x2y

38 Amm2 �12 ; 1
2 ; 0� 2jx, 2jy, 2jz Q odd 2x2y2z

39 Abm2 �12 ; 1
2 ; 0� 2jx, 4jy, 2jz M odd 2x4y

40 Ama2 �12 ; 1
2 ; 0� 4jx, 4jy, 2jz M odd 2x4y

41 aba2 �12 ; 1
2 ; 0� 4jx, 4jy, 2jz M odd 2x4y

42 Fmm2 �12 ; 1
2 ; 0� 4jx, 4jy, 2jz N odd, M odd 4x4y

43 Fdd2 �12 ; 1
2 ; 0� 4jx, 4jy, 4jz N odd, M odd 4x4y

44 Imm2 �12 ; 1
2 ; 0� 2jx, 2jy, 2jz Q odd 2x2y2z

45 Iba2 �12 ; 1
2 ; 0� 4jx, 2jy, 2jz N odd 4x2y

46 Ima2 �12 ; 1
2 ; 0� 4jx, 2jy, 2jz Q odd 2x2y2z

63 Cmcm �12 ; 1
2 ;

1
2� 4jx; 4jy; 4jz N odd 4x2y2zy

64 Cmca �12 ; 1
2 ;

1
2� 4jx; 4jy; 4jz N odd 4x2y2zy

65 Cmmm �12 ; 1
2 ;

1
2� 4jx; 2jy; 2jz N odd 4x2y2zy

66 Cccm �12 ; 1
2 ;

1
2� 4jx; 2jy; 2jz N odd 4x2y2zy

67 Cmma �12 ; 1
2 ;

1
2� 4jx; 4jy; 2jz N odd 4x2y2zy

68 Ccca �12 ; 1
2 ;

1
2� 4jx; 4jy; 4jz N odd 4x2y2zy

69 Fmmm �12 ; 1
2 ;

1
2� 4jx; 4jy; 2jz N odd, M odd 4x4y2z

70 Fddd �12 ; 1
2 ;

1
2� 4jx; 4jy; 8jz N odd, M odd 4x4y2z

71 Immm �12 ; 1
2 ;

1
2� 4jx; 2jy; 2jz N odd 4x2y2zy

72 Ibam �12 ; 1
2 ;

1
2� 4jx; 2jy; 2jz N odd 4x2y2zy

73 Ibca �12 ; 1
2 ;

1
2� 4jx; 4jy; 2jz N odd 4x2y2zy

74 Imma �12 ; 1
2 ;

1
2� 4jx; 4jy; 2jz N odd 4x2y2zy

79 I4 �12 ; 1
2 ; 0� 2jx; 2jy; 2jz Q odd 2x2y2z

80 I41 �12 ; 1
2 ; 0� 2jx; 2jy; 4jz Q odd 2x4z

82 I �4 �12 ; 1
2 ;

1
2� 2jx; 2jy; 2jz Q odd 2x2y2z

87 I4=m �12 ; 1
2 ;

1
2� 2jx; 2jy; 4jz Q odd 2x2y4z

88 I41=a �12 ; 1
2 ;

1
2� 2jx; 2jy; 4jz M odd, Q odd 2x2y4z

97 I422 �12 ; 1
2 ;

1
2� 2jx; 2jy; 4jz Q odd 2x2y4z

98 I4122 �12 ; 1
2 ;

1
2� 4jx; 4jy; 4jz Q odd 2x2y4z

119 I �4m2 �12 ; 1
2 ;

1
2� 2jx; 2jy; 4jz Q odd 2x2y4z

120 I �4c2 �12 ; 1
2 ;

1
2� 2jx; 2jy; 4jz Q odd 2x2y4z

146 R3 �23 ; 1
3 ; 0� 3jx; 3jy; 3jz Q not divisible

by 3
3(x+y) 3z

² I21 is the group de®ned by symmetry operators x; y; z; ÿx; y� 1=2;ÿz;
x� 1=2; y� 1=2; z� 1=2; ÿx� 1=2; y; 1=2ÿ z. ³ C21 is the group de®ned by
symmetry operators x; y; z; ÿx; y� 1=2;ÿz; x� 1=2; y� 1=2; z; 1=2ÿ x; y;ÿz. § A2
is the group de®ned by symmetry operators x; y; z; ÿx; y� 1=2;ÿz; x; y� 1=2; z� 1=2;
ÿx; y; 1=2ÿ z.
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of every second point along x and y axes (discussed in x4.1 of

paper II). 2x2y2z: regular subgrid consisting of every second

point along x, y and z axes (see x4.2 of paper II). 3(x+y):
subgrid of x� y divisible by 3 (see paper I and x4.3 of paper

II). ICent.: body centring (see x3.4). FCent.: all-face centring

(see x3.3). ACent.: A-face centring (see x3.2). CCent.: C-face

centring (see x3.1). RCent.: rhombohedral centring.

APPENDIX B
Tables of algorithms for non-practical grid sizes

Here we present examples of algorithms restricted by a

maximal divisibility of unit-cell sizes. They are conceptually

simpler than those in Appendix A. However, since the typical

numbers of grid points in crystallographic data processing are

divisible by 26 up to 210, we consider these algorithms non-

practical. In other words, by dealing with such grid sizes the

bene®t of a somewhat simpler algorithm will be outweighed by

loss in the ef®ciency of the P1 FFT, as was pointed out in the

Discussion. Table 2 describes the set-up. The columns have the

same meaning as in Appendix A, except for the new column

listing additional conditions on integers N, M and Q, param-

eterizing matrix A.
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